Agni-5, a nuclear-capable missile with the longest range so far, of 5,500 km and described by India as a “weapon of peace,” was successfully test-fired from Kalam Island off the Odisha coast, on 26 December 2016, by the Defence Research and Development Organisation (DRDO).
The latest in India’s “Agni” family of medium to intercontinental-range missiles, capable of carrying an approximately 1000 kg warhead, with new technology for navigation and guidance, it provides India with the strategic depth needed to contain Pakistan and China. It is also a fire-and-forget system that cannot be easily detected as it follows a ballistic trajectory.
This was the first test launch of Agni-5 missile after India became a member of the Missile Technology Control Regime (MTCR), a 35-nation group to check the spread of unmanned delivery systems for nuclear weapons. Congratulating the team of scientists behind the successful launch, Prime Minister Narendra Modi said, “Successful test firing of Agni V makes every Indian very proud. It will add tremendous strength to our strategic defence.”
On 12 January 2017, the Pinaka Rocket Mark-II, which evolved from Pinaka Mark-I and equipped with a navigation, guidance and control kit was transformed to a guided projectile with considerably enhanced range and accuracy was successfully test-fired from Launch Complex-III, at Chandipur. The test-firing has met all mission objectives. The radars, electro-optical and telemetry systems at Chandipur tracked and monitored the vehicle all through the flight-path.
Designing and producing Agni 1, 2, 3 and 4 missile systems, supersonic cruise missiles like BrahMos and some other missiles already in India’s arsenal is no mean achievement. It is relevant to ‘trace the trajectory,’ so to speak, of India’s missile programme. The first missile of the series, Agni-I was developed under the Integrated Guided Missile Development Program and tested in 1989.
The ranges of missiles in the series are Agni-1, up to1250km; Agni-2, 2,000 km; Agni-3, 3500 km and Agni-4, 4,000 km. The launch of Agni 4 on 11 November 2011, placed India on a trail of new generation missiles. The comparatively light in weight Agni-4, with two stages of solid propulsion and a payload with re-entry heat shield, was the first to be used with composite rocket motor technology, which greatly enhanced its performance.
Equipped with modern and compact avionics with redundancy to provide a high level of reliability, the indigenous ring laser gyros-based high-accuracy INS (Rins) and micro navigation system (Mings) complementing each other in redundant mode, were successfully flown in guidance mode also for the first time.
The use of rockets and missiles in India dates back to the 18th century, during the period of Hyder Ali and Tipu Sultan. They used rocket artillery brigades against infantry formations for mass attacks. Men were trained to launch rockets from a launch angle which was calculated from the diameter of the cylinder and the distance of the target. The launchers could launch 5-10 rockets in salvo mode.
Each of Tipu Sultan’s 27 brigades had a company of rocket specialists. With such a huge force, he defended the Mysore kingdom against the British until his death in Srirangapatnam in 1799. Two of the rockets, captured by the British at Srirangapatnam, are displayed in London’s Royal Artillery Museum. The Marathas also used rockets in the 1761 Battle of Panipat.
Indian rocketry, which ended after Tipu Sultan’s death, was revived in the 1970s by Dr Vikram Sarabhai and Dr APJ Abdul Kalam, among others. Defence Science Organisation, formed in 1956 for initiating studies and development of futuristic weapon systems, was headed by Dr BN Singh who formed the special weapon development team (SWDT) for study and development of guided missiles at Metcalfe House, Delhi.
He worked on the first generation of anti-tank missiles for gaining developmental experience. SWDT later became the Defence Research and Development Laboratory (DRDL) at old Ahmed Manzil, Hyderabad, in June 1962 under Gp Capt V. Ganesan as its director.
A project formulated at DRDL in 1964 was supported by the Army after the 1965 Indo-Pak war and was later converted to a “staff project,” which tested an indigenously developed anti-tank missile in 1970. It was considered as a major achievement by the DRDL, which later moved to the Defence Research Complex at Kanchanbagh, on the periphery of Hyderabad’s Old City. Later, some scientists, in collaboration with the Army, Navy and the Air Force officers developed the Devil missile.
All the preliminary understanding and development of electronics subsystems of the Devil missile, including its airframe and aerodynamics were carried out at Ahmed Manzil laboratory. Leading scientists like Burman, JC Bhattacharya, Admiral Mohan and Surya Kantha Rao gave thrust to electronics, navigation, guidance and control as well as telemetry and instrumentation areas.
Dr Ranga Rao, Dr Rama Rao, Dr Bala Krishnan, Krishnan and Dr Achyuthan gave priority to the airframe, structures, aerodynamics and system-related areas. This was further strengthened by the techno-managerial leadership of Lt Gen Dr V.J. Sundaram (Retd), Lt Gen R. Swaminathan and Sqn Ldr Shah in the area of airframe controls and integration.
Rocket Test House (RTH), near Kanchanbagh, was used for carrying out propulsion-related design and tests. The liquid and solid propulsion areas were continuing with vibrant leadership of Dr Gopal Swamy and Wg Cdr Sen.Re-entry technology and ballistic missile programmes were spearheaded by R.N. Agarwal.
The state-of-the-gyro test facility was initiated by P. Banerjee within the campus. However, the whole facility of Ahmed Manzil was shifted near Kanchanbagh in 1975. Full- scale missile laboratory (DRDL) was built from then onwards.
The Integrated Guided Missile Development Programme (IGMDP) under India’s defence ministry, began in the early 1980s for the development of a comprehensive range of missiles, including the intermediate-range Agni missile (surface-to-surface), and short-range missiles such as the Prithvi ballistic missile (surface-to-surface), Sagarika, the naval version of the Prithvi, Akash missile (surface-to-air), Astra missile (air-to-air), Trishul missile (surface-to-air), Nag missile (anti-tank) and also an intercontinental-ballistic-missile named Surya, with a range of 8,000-12,000km.
Managed by DRDO in partnership with other Indian government laboratories and research centres, one of the most prominent chief engineers on the project, Dr Abdul Kalam went on to become the President of India.
The last major missile developed under the programme was Agni-III intermediate-range ballistic missile which was successfully tested on July 9, 2007. After the third test of Agni-3 on May 7, 2008, the DRDO announced the closure of the IGMDP since most of the missiles in the programme have been developed and inducted into Indian armed forces.
These were the Akash, Nag, Prithvi, Trishul and Agni (as re-entry technology demonstrator). According to General Knowledge Today the following missiles were developed under IGMDP: Trishul, Akash, Nag, Prithvi Missile Series, Agni missile series, K Missile Series, Shaurya, BrahMos, BrahMos II, Nirbhay, Prahaar, Astra, Barak-8, Anti-Radiation Missile, Anti-Satellite Missile, Indian Ballistic Missile Defense Program, Prithvi Air Defence and Advanced Air Defence.
According to a statement to the media by Dr S. Prahlada, former director DRDL and CC, R&D (services interaction and aeronautics) and later Vice-Chancellor Defence Institute of Advanced Technology, Pune, new missile and weapon systems would be developed in new five-year programmes and to involve both Indian private industries as well as foreign partners to reduce costs.
Independently continuing further development of Nag missile, the DRDO is also developing a laser-based weapon system as part of its ballistic missile defence programme to intercept and destroy missiles soon after they are launched towards the Indian territory.
In 1998, the government of India signed an agreement with Russia to design, develop, manufacture and market BrahMos (Brahmaputra-Moscow rivers), a supersonic cruise missile system that can be launched from submarines, ships, aircraft or land. The mission was successfully accomplished by 2006. At speeds of Mach 2.5 to 2.8, it is the world’s fastest cruise missile, about three-and-a-half times faster than the American subsonic Harpoon cruise missile.
BrahMos has been reportedly attempting a hypersonic Mach 8 version of the missile, BrahMos II, the first-ever hypersonic cruise missile. According to DEFENCEUPDATE, 19 March 2016, the Russians successfully carried out the first test-firing of a hypersonic version of Brahmos missile in Russia. Russian sources indicated that the test was successful and the missile flew at the speed of Mach 6.
However, they made no mention of the range and the mode of flight. While one version is that the Zircon will be used to develop the Brahmos II missile, another version is that the Zircon missile itself is the Brahmos II. DEFENCEUPDATE further informed that Russia planned to replace its existing P 800 and Kalibr missiles from Russian naval ships and submarines with Zicron missiles and that Brahmos is also developing mini hypersonic versions of Brahmos II for offshore patrol vehicles and fighter aircraft.
Undoubtedly, Brahmos has emerged as an accomplished joint venture under the Make in India category and with countries lining up to purchase its products. Reportedly, three BrahMos missile regiments raised so far have been deployed in the western sector to counter the threat from Pakistan and in the second phase of military expansion along the China front, the government reportedly gave the go-ahead for the deployment of BrahMos cruise missiles in Arunachal Pradesh.
The fourth regiment of cruise missiles, with a 290-km range, will improve India’s military reach into the Tibet Autonomous Region and counter China’s elaborate missile deployment along the Sino- Indian Line of Actual Control. The Agni-6 is reported to be in early stages of development and the latest and most advanced version is expected to be capable of being launched from submarines as well as from land, with a strike-range of 8,000-10,000 km.
Considering the problems India faced for decades in modernising/ replenishing its conventional weapons arsenal, thanks to politico-bureaucratic apathy and the sanctions/obstacles faced in reaching the MTCR status, its achievements in the field of missile and satellite technology are commendable. However, that must not make the national security decision-makers complacent. They have to ensure that production levels are maintained, as the achievement of such technology is meaningless without sufficiency in numbers.
SUCCESSFUL FLIGHT TEST OF GUIDED BOMBS
03 November 2017
Indigenously developed light weight Glide Bomb, SAAW (Smart Anti Airfield Weapon) was successfully tested from Indian Air Force aircraft in the ranges at ITR, Chandipur, Odisha. The guided bomb released from the aircraft and guided through a precision navigation system, reached the targets at greater than 70 km range, with high accuracies. A total of three tests with different release conditions and ranges were conducted and all were successful.
The guided bomb is developed by Research Centre Imarat (RCI), DRDO along with other laboratories of DRDO and Indian Air Force. Raksha Mantri Smt Nirmala Sitharaman congratulated the DRDO scientists and Indian Air Force for the successful tests.
Secretary, Department of Defence, R&D and Chairman DRDO, Dr S Christopher congratulated the team and said SAAW will be inducted soon into the Armed Forces. Director General Missiles and Strategic System DG (MSS) Dr G Satheesh Reddy said it’s a major milestone in the indigenous capabilities to develop guided bombs
DRDO CONDUCTS SUCCESSFUL FLIGHT TRIAL OF ‘NIRBHAY’ SUB-SONIC CRUISE MISSILE
Tuesday, 07 November 2017
Defence Research and Development Organisation (DRDO) achieved yet another feat today with the successful test flight of ‘NIRBHAY’ – India’s first indigenously designed and developed Long-Range Sub-Sonic Cruise Missile which can be deployed from multiple platforms.
It was successfully test-fired from the Integrated Test Range (ITR), Chandipur, Odisha. The missile has the capability to loiter and cruise at 0.7 Mach, at altitudes as low as 100 m. The flight test achieved all the mission objectives completely from lift-off till the final splash, boosting the confidence of all scientists associated with the trial.
The missile took-off in a programmed manner and all critical operations viz. launch phase, booster deployment, engine start, wing deployment and other operational parameters demonstrated through autonomous waypoint navigation.
The guidance, control and navigation system of the missile is configured around the indigenously designed Ring Laser Gyroscope (RLG) and MEMS-based Inertial Navigation System (INS) along with GPS system. The missile majestically cruised for a total time duration of 50 minutes, achieving the range of 647 km. The missile was tracked with the help of ground-based radars and other parameters were monitored by indigenous telemetry stations developed by DRDO.
Raksha Mantri Smt Nirmala Sitharaman hailed the success of DRDO Scientists and complimented them for this inspired achievement. She was optimistic that this successful trial would take India to the select League of Nations for possessing this complex technology and sub-sonic cruise missile capability.
Chairman DRDO and Secretary Department of Defence (R&D), Dr S Christopher, DG (Aero) Dr CP Ramanarayanan, Director ADE, RCI, ITR and CEMILAC, along with other senior DRDO scientists and user representatives from Army witnessed the momentous launch and congratulated the team ‘NIRBHAY’ for making DRDO proud for the long-awaited achievement.